Mechanisms of group A Streptococcus resistance to reactive oxygen species
نویسندگان
چکیده
Streptococcus pyogenes, also known as group A Streptococcus (GAS), is an exclusively human Gram-positive bacterial pathogen ranked among the 'top 10' causes of infection-related deaths worldwide. GAS commonly causes benign and self-limiting epithelial infections (pharyngitis and impetigo), and less frequent severe invasive diseases (bacteremia, toxic shock syndrome and necrotizing fasciitis). Annually, GAS causes 700 million infections, including 1.8 million invasive infections with a mortality rate of 25%. In order to establish an infection, GAS must counteract the oxidative stress conditions generated by the release of reactive oxygen species (ROS) at the infection site by host immune cells such as neutrophils and monocytes. ROS are the highly reactive and toxic byproducts of oxygen metabolism, including hydrogen peroxide (H2O2), superoxide anion (O2•(-)), hydroxyl radicals (OH•) and singlet oxygen (O2*), which can damage bacterial nucleic acids, proteins and cell membranes. This review summarizes the enzymatic and regulatory mechanisms utilized by GAS to thwart ROS and survive under conditions of oxidative stress.
منابع مشابه
How group A Streptococcus circumvents host phagocyte defenses.
Group A Streptococcus (GAS) is a Gram-positive bacterium associated with a variety of mucosal and invasive human infections. GAS systemic disease reflects the diverse abilities of this pathogen to avoid eradication by phagocytic defenses of the innate immune system. Here we review how GAS can avoid phagocyte engagement, inhibit complement and antibody functions required for opsonization, impair...
متن کاملInteraction of polyamine and proline on the activity of enzymatic and non-enzymatic compounds in the peel of three Citrus species under low temperature stress
Plants activate antioxidant defense mechanisms under stress, which help maintaining the structural integrity of cell components and possibly reduces oxidative damage. Low temperature stress leads to the production of reactive oxygen species and oxidative damage to plants. In this study, the effect of putrescine and proline on reducing the production of reactive oxygen species and increasing th...
متن کاملAssessment of Streptococcus Salivarius ssp Thermophilus Antioxidant Efficiency and its Role in Reducing Paracetamol Hepatotoxicity
Background: Probiotics have attracted a great attention aiming to develop natural non-toxic antioxidants, because of their role in decreasing the risk of reactive oxygen species (ROS) accumulation. Objectives: The purpose of this study was to assess the antioxidant activity of a probiotic Streptococcus salivarius ssp thermophillus (St.sa) and to evaluate its protective effect against the ...
متن کاملRole of Angiotensin II in Reactive Oxygen Species Production and Modulatory Role of Nitric Oxide (NO) in Vessel Responses to AngII in Acute Joint Inflammation in the Rabbit
Introduction: It has been approved that in most tissues NO production increases during acute inflammation and Angiotensin II has a role in production of reactive oxygen species (ROS). As regulation of joint blood flow (JBF) is important in this situation, this study was performed to investigate the interaction of local Ang II and ROS production and the modulatory role of NO on regulation of JBF...
متن کاملDistinct Structural Features of the Peroxide Response Regulator from Group A Streptococcus Drive DNA Binding
Group A streptococcus (GAS, Streptococcus pyogenes) is a strict human pathogen that causes severe, invasive diseases. GAS does not produce catalase, but has an ability to resist killing by reactive oxygen species (ROS) through novel mechanisms. The peroxide response regulator (PerR), a member of ferric uptake regulator (Fur) family, plays a key role for GAS to cope with oxidative stress by regu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 39 شماره
صفحات -
تاریخ انتشار 2015